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Abstract

An analysis is presented of the diffraction of a pressure wave by a periodic grating including the influence of the air
viscosity. The direction of the incoming pressure wave is arbitrary. As opposed to the classical nonviscous case, the prob-
lem cannot be reduced to a plane problem having a definite 3-D character. The system of partial differential equations used
for solving the problem consists of the compressible Navier–Stokes equations associated with no-slip boundary conditions
on solid surfaces. The problem is reduced to a system of two hypersingular integral equations for determining the velocity
components in the slits’ plane and a hypersingular integral equation for the normal component of velocity. These equations
are solved by using Galerkin’s method with some special trial functions. The results can be applied in designing protective
screens for miniature microphones realized in MEMS technology. In this case, the physical dimensions of the device are on
the order of the viscous boundary layer so that the viscosity cannot be neglected. The analysis indicates that the openings
in the screen should be on the order of 10 lm in order to avoid excessive attenuation of the signal. This paper also provides
the variation of the transmission coefficient with frequency in the acoustical domain.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of diffraction of a plane wave by a periodic plane grating consisting of thin (zero thickness),
coplanar, equally spaced barriers with parallel edges is a classical problem of wave propagation. The problem
admits acoustic, electromagnetic, elastic solid, and water wave interpretations and has been studied by many
authors. For the normal incidence case, Lamb [1] obtained analytical formulas for the reflection and transmis-
sion coefficients in the low frequency limit. Miles [2] studied the case of a grating of inclined flat plates in a
one-mode approximation for small screens. Achenbach and Li [3] have developed an exact method suitable
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for arbitrary frequency and incidence. They utilized a periodic Green’s function to reduce the problem to a
singular integral equation. This equation has been solved by expanding the unknown function in Chebyshev
polynomials and solving for the coefficients from a set of algebraic equations resulting from a Galerkin-type
approach. Finally, we note the paper of Scarpetta and Sumbatyan [4] which provides some explicit analytical
formulas for reflection and transmission coefficients in the one-mode oblique incidence case.

Recent progress in integrated circuit technology has enabled the fabrication of microelectromechanical sys-
tems (MEMS) including accelerometers, pressure sensors, etc. The development has led toward small (submin-
iature) microphones with diaphragms of order of 1 mm. In order to protect the mobile part of the device from
dust particles and water drops some protecting structures have been designed. A simple model of such a pro-
tecting screen is a periodic plane grating. It is clear that the fluid viscosity must have an increasingly important
effect on sound transmission through a grating as the hole sizes decrease. In fact, it can be shown that the
boundary layer associated with the plane wave air motion past a hard plane is of the order of 1 mm, the same
as the order of the dimensions of the devices.

The influence of viscosity on the pressure wave propagation was considered in only a few papers. In 1957
Alblas [5] solved the problem of scattering of a pressure wave by a halfplane considering the viscosity of the
air. Pierce’s book [6] contains a chapter dedicated to effects of viscosity and other dissipative processes. In the
paper [7] the 2-D propagation of a damped acoustical wave through a periodic grating was considered. This
paper analyzed the particular case when the incoming plane wave has its propagation direction perpendicular
to the gratings’ strips direction (referred henceforth as the longitudinal direction). Hence, the analysis in the
present paper is a direct generalization of the work in [7].

The present paper gives a complete solution for the linear boundary-value problem corresponding to the
reflection and transmission of an incident, time-harmonic plane wave by a periodic system of screens for a
viscous fluid. We start in Section 2 with the linearized equations describing the motion of a viscous fluid in
the absence of a mean flow; the corresponding nonslip boundary condition on the plane screen and also Som-
merfeld’s radiation condition complete the formulation of the boundary-value problem.

Due to the special geometry of the problem (translation invariance parallel to the longitudinal y-axis) as
with the nonviscous case, a reduced problem (independent of y-variable), can be formulated [8]. But, in con-
trast to the inviscid case, due to the continuity equation which involves all the velocity components, the prob-
lem cannot be treated any more as a 2-D problem corresponding to the case where the incoming wave is
propagating perpendicular to the strips’ direction.

In the next section, representation formulas for pressure and velocity in the upper and lower half-spaces are
given. These formulas result by using Fourier Transforms of the linearized continuity and momentum equa-
tions, with respect to x and y variables (by xOy we denote the plane containing the strips). The incoming wave
is considered as a plane pressure wave characterized by unit vector n0. As the attenuation of the sound waves
in air at atmospheric pressure is very small, we neglect it in all propagating modes (incoming wave and out-
going waves). This is why, despite the viscous dissipation, we continue to use Sommerfeld’s condition. The
incoming pressure wave is perturbed by the gratings’ strips giving reflected and transmitted waves. The rep-
resentation formulas for reflected and transmitted pressures contain an infinite number of wave modes, each
with its own cut-off frequency. At the cut-off frequency, a mode converts from a propagating wave mode into
an evanescent mode. At small frequencies only the lower order modes are propagating. As the frequency is
increasing, more and more evanescent modes convert to propagating modes. For audible frequencies in air,
which is the case we are considering in this paper, only the lowest modes are propagating. The case when also
other modes are propagating can be analyzed similarly. The velocity field contains besides the propagating
modes, generated by the pressure waves, a system of viscous (vorticity) modes which are decaying exponen-
tially with the distance from perturbation sources.

The values of velocity components along the slits are taken as the main unknown functions. All the coefficients
entering in representation formulas are expressed in terms of Fourier Transforms of velocity components. We
impose also the natural conditions of continuity of the velocity and its normal derivative across the slits; these con-
ditions give the functional equations of the problem. There results a system of two equations connecting the plane
components of velocity and, a separate integral equation corresponding to the z-component of velocity. The func-
tional equations contain divergent series and, consequently, they can be understood properly only within distribu-
tions theory. We succeeded in transforming the functional equations into hypersingular integral equations.
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In Section 5 is given a method for solving the hypersingular integral equations by considering a basis of
Chebyshev-type functions and taking advantage of the convenient form of the convolution product in the
spectral domain. By a Galerkin technique we obtain infinite systems of linear (algebraic) equations for deter-
mining the expansion coefficients of the velocity components in the considered basis. The coefficients of linear
systems result by using spectral properties of the singular part of integral equations, FFT transform of some
smooth functions and the summation of some convergent infinite series. Since the chosen Chebyshev type
bases describe quite well the singular behavior of the velocity derivatives at the ends of the slits the final sys-
tems are well conditioned and only a few terms are sufficient for obtaining a good approximation of the veloc-
ity components.

Results are included in Section 6. A comparison is made of the transmission coefficient for the case of non-
viscous and viscous fluid. The solution for the nonviscous (classical) case is determined by using the compu-
tational technique developed in this paper. The obtained results coincide very well with the values resulting
from the other approaches of the inviscid problem (for example, [4]). Also, in the case where the incident wave
is propagating perpendicular to the strips’ direction the results obtained by using this approach coincide with
those of the 2-D case given in [7].

The results for the viscous case show a strong attenuation of the waves in the case where the slit width is
small (less than 10 lm). In this paper, we also analyze the influence of the incoming wave direction upon the
transmission coefficient. The transmission coefficient is practically insensitive with respect to the azimuthal
coordinate. The paper also gives some graphs showing the variation of the transmission coefficient with fre-
quency in the audible frequency range. The obtained data can be used for designing protecting screens for
miniature microphones.

At last but not least we note that the consideration of viscosity enabled us to avoid the nonphysical singu-
larity of the classical (nonviscous) solution at the strips’ edges [5].

2. The equations of the problem

2.1. Formulation of the problem

We consider the penetration of a pressure wave through the array of coplanar rigid screens located at z = 0
in Fig. 1a. The screens are infinitely long in the y-direction, the opening between two neighboring screens is 2a

and the period of the grating is T = a + b (Fig. 1b). We denote by Dþ the upper half-plane (z > 0) and by D�

the half plane z < 0. The incident wave is located in the domain Dþ and its propagation vector is given by the
unit vector n0.

There are two periodic phenomena in this problem: one is associated with the acoustical incoming wave and
the other one with the grating periodicity. To avoid possible confusions we associate a ‘‘*’’ to the quantities
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( 
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Fig. 1. The geometry of the problem: (a) the 3-D view, (b) a 2-D view.
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related to the acoustical incoming wave (k* is the angular frequency wave number of the plane incoming wave
and x* its angular frequency). The ‘‘nonstared’’ quantities T and x = 2p/T are the spatial period of the grating
and its corresponding spatial frequency, respectively. The notations we are using are consistent with those in
paper [7].

2.2. The equations of the motion of a viscous fluid in linear acoustic approximation

In the case where the coordinate system is chosen so that the unperturbed fluid is at rest (having the density
q0 and the isentropic sound velocity c0) the first-order equations describing the motion of the gas can be writ-
ten as [6,7,8]

1

c2
0

o

ot
p0

q0

þ $ � v0 ¼ 0 ð1Þ

ov0

ot
þ $

p0

q0

� ðm0 � mÞ$ � v0
� �

� mDv0 ¼ 0 ð2Þ

where p 0 and v 0 denote the pressure and velocity perturbations and

m ¼ l
q0

; m0 ¼ lB

q0

þ 4l
3q0

are the kinematic viscosities. Also, l and lB are the shear and bulk viscosities [6].
We consider the case where all the field variables are harmonic in time with the same frequency x* = 2pf.

The case of general time dependence can be obtained, after analyzing each frequency separately, by Fourier
superposition. In the case of simple harmonic oscillations in time we shall write

fp0ðx; tÞ; v0ðx; tÞg ¼ fpðxÞ; vðxÞg expð�ix�tÞ
In this case the continuity Eq. (1) becomes

$ � v ¼ ix�

c2
0

p
q0

ð3Þ

Also, the momentum equation can be written as

Dvþ ix�

m
v ¼ c$

p
q0

ð4Þ

where it was denoted

c ¼ 1þ ðm� m0Þix�=c2
0

m

The relationships (3) and (4) give the equation for the pressure

½Dþ k�2� p ¼ 0 ð5Þ
Here, we have used the notation

k� ¼ x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0 � ix�m0
p ; Imðk�ÞP 0 ð6Þ

Eqs. (4) and (5) constitute a system of four partial differential equations for determining the pressure and
velocity fields.

For a viscous fluid we have the nonslip boundary condition

vðxÞ ¼ 0 ð7Þ
on any immobile solid surface.

Beside this, we will impose that all the propagating perturbations, except for the incoming plane wave, are
outgoing waves (Sommerfeld radiation condition).
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3. The representation formulas for the pressure and velocity fields

Let us consider an incoming plane pressure wave in Dþ

pðinÞx ðxÞ=q0 ¼ A expfik�n0 � xg

where n0 ¼ n0xbx þ n0yby þ n0zbz is the unit vector of the propagation direction of the wave. It can be verified
directly that the function pðinÞx satisfies the pressure Eq. (5). Also, Eqs. (3) and (4) provide the corresponding
velocity field as

vðinÞx ðxÞ ¼ idk�An0 expfik�n0 � xg

where it has been denoted

d ¼ 1þ ðm� m0Þix�=c2
0

ix� � mk�2

The special geometry of the problem with respect to the y-axis and the form of the incoming wave suggest the
determination of the solution in the form

pxðxÞ ¼pðx; zÞ expfik�n0yyg
vxðxÞ ¼vðx; zÞ expfik�n0yyg

The problem consisting of determining the functions p(x,z) and v(x,z) will be referred as ‘‘the reduced prob-

lem’’. Due to the continuity equation, which involves all the velocity components, the reduced problem differs
from the 2-D case when the incident wave direction is contained in a plane perpendicular to the strips and
containing the x-axis. This is also an important difference from the nonviscous case when the general 3-D
problem can be solved by means of a 2-D problem (see Ref. [8]).

Eqs. (3) and (4) become

ou
ox
þ ik�n0yvþ

ow
oz
¼ ix�

c2
0

p
q0

ð8Þ

o2

ox2
þ o2

oz2
� k�2n2

0y þ
ix�

m

� � u

v

w

264
375 ¼ c

op=ox

ik�n0yp

op=oz

264
375 ð9Þ

Now in order to use the periodicity of the grating with respect to x-axis we write

v�ðx; zÞ ¼ expðik�n0xxÞev�ðx; zÞ ð10Þ

ev�ðx; zÞ being a periodic function in x

ev�ðxþ T ; zÞ ¼ ev�ðx; zÞ ð11Þ

Therefore we obtain

v�ðx; zÞ ¼
Xþ1
�1
ev�n ðzÞ expðiknxÞ ð12Þ

where ev�n ðzÞ ¼ ðeu�n ðzÞ;ev�n ðzÞ; ew�n ðzÞÞ are the complex Fourier coefficients of the function ev�ðx; zÞ
ev�n ðzÞ ¼ 1

T

Z þa

�a
v�ðx0; zÞ expð�inxx0Þdx0 ð13Þ

It has been denoted

kn ¼ nxþ k�n0x;x ¼ 2p=T
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The system of Eqs. (8) and (9) becomes

dew�n
dz
þ ikneu�n þ ik�n0yev�n ¼ ix�

c2
0

ep�n ð14Þ

d2

dz2
� k2

n � k�2n2
0y þ

ix�

m

� � eu�nev�new�n
264

375 ¼ c
q0

ikn

ik�n0y

d=dz

264
375ep�n ð15Þ

The solution of this system of equations is considered of the form

eu�n ðzÞ;ev�n ðzÞ; ew�n ðzÞ; ep�n ðzÞ� �
¼ eaz U�n ; V

�
n ;W

�
n ; P

�
n

� �
ð16Þ

where a is a constant to be determined. The substitution of (16) into (14) and (15) yields the homogeneous
system of algebraic equations for the constants U�n ; V

�
n ;W

�
n ; P

�
n

b 0 0 ikn

0 b 0 ik�n0y

0 0 b a

ikn ik�n0y a ix�0=ðcc2
0Þ

26664
37775 �

U�n
V �n
W �

n

�cP�n =q0

26664
37775 ¼ 0 ð17Þ

where

b ¼ a2 � k2
n � k�2n2

0y þ ix�=m ð18Þ

Nontrival solutions to Eq. (17) exist when the matrix is singular, which occurs when

b2 b� ix�cc2
0

mðcc2
0 � ix�Þ

� �
¼ 0 ð19Þ

Eqs. (17) and (18) give

a ¼ �qn � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

n þ k�2n2
0y � ix�=m

q
; ReðqnÞP 0 ð20Þ

a ¼ �rn � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

n � k�2ð1� n2
0yÞ

q
; ReðrnÞP 0; n 6¼ 0 ð21Þ

To analyze the propagating and evanescent modes we consider the expression En under the square root in for-
mula (21). Thus, this can be written as

En ¼ x2½n2 þ 2nn0xt � n2
z t2�

where t = k*/x = fT/c0.
For n = 0 there results E0 ¼ �k�2n2

0z and formula (21) yields

a ¼ �r0 � �ik�n0z

which describes a propagating mode. The mode corresponding to n = 1 gives

E1 ¼ x2½1þ 2n0xt � n2
z t2�

In the domain of acoustical frequencies (f < 2 kHz) and for spatial microfield variables (T � 10�6 m) there
results t � 1. Since n0x can be assumed positive we have E1 > 0 resulting that the first mode describes an
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evanescent wave. Similarly, all the modes corresponding to n > 1 give evanescent waves. In the case where the
frequency is increasing (for example, in the ultrasonic domain) more and more modes turn into propagating
modes. As we are mainly interested in audio frequency applications we consider the one propagating mode
case; the general case can be treated similarly.

3.1. Representation formulas for the reduced problem

The velocity field corresponding to the incoming pressure wave can be written as

v0ðx; zÞ ¼ ik�Adn0eik�ðn0xxþn0zzÞ ð22Þ

Then, we have

pðx; zÞ=q0 ¼
Aeik�ðnxxþnzzÞ þ Pþ0 eik�ðn0xx�n0zzÞ þ

P
n6¼0

Pþn eiknx�rnz; in Dþ

P�0 eik�ðn0xxþn0zzÞ þ
P
n6¼0

P�n eiknxþrnz; in D�

8><>: ð23Þ

Thus, the scattered pressure field consists of a superposition of an infinite number of wave modes. For audible
frequencies only the lowest order mode is propagating; all the other modes describe standing waves which
decay exponentially with the distance to the plane z = 0. In writing the solution representation (23) we con-
sidered also Sommerfeld’s radiation condition. The constants P�n will be determined by using the boundary
conditions. In the case of the viscous fluid these conditions are written by means of velocities. For the velocity
field we obtain

vðx; zÞ ¼
v0ðx; zÞ þ eik�n0xxevþ0 ðzÞ þP

n 6¼0

eiknxevþn ðzÞ; in Dþ

eik�n0xxev�0 ðzÞ þP
n 6¼0

eiknxev�n ðzÞ; in D�

8><>: ð24Þ

where

eu�0 ðzÞ ¼ U�0 e	q0z þ ik�n0xdP�0 =q0e	ik�n0zz

ev�0 ðzÞ ¼ V �0 e	q0z þ ik�n0ydP�0 =q0e	ik�n0zz ð25Þ

ew�0 ðzÞ ¼ � ik�

q0

n0xU�0 þ n0yV �0
� �

e	q0z 	 ik�n0zdP�0 =q0e	ik�n0zz

eu�n ðzÞ ¼ U�n e	qnz þ ikndP�n =q0e	rnz

ev�n ðzÞ ¼ V �n e	qnz þ ik�n0ydP�n =q0e	rnz ð26Þew�n ðzÞ ¼ �ðiknU�n =qn þ ik�n0yV �n =qnÞe	qnz 	 rndP�n =q0e	rnz

In writing the representation (24) of the velocity field we imposed again Sommerfeld’s condition that apart
from initial perturbation, the rest of the solution describes outgoing waves.

The velocity field is continuous across the plane z = 0. Indeed it is continuous along the gaps and it is van-
ishing on the strips. Consequently we can write

vðx;�0Þ � eik�n0xxevðxÞ ¼ eik�n0xx
Xþ1
�1

einxxevn; x 2 R ð27Þ

Remark 1. The Fourier coefficients evn ¼ ðeun;evn; ewnÞ are completely different from the functionsev�n ðzÞ ¼ ðeu�n ðzÞ;fv�nðzÞ; ew�n ðzÞÞ.
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We express the unknown coefficients P�n ;U
�
n ; V

�
n in terms of the physical coefficients evn. There results

Pþ0 =q0 ¼
�ik�n0xeu0 � ik�n0yev0 þ q0ew0 � idk�n0zq0 � dk�2ð1� n2

0zÞ
dðk�2n2

0x þ k�2n2
0y � ik�n0zq0Þ

P�0 =q0 ¼
�ik�n0xeu0 � ik�n0yev0 � q0ew0

dðk�2n2
0x þ k�2n2

0y � ik�n0zq0Þ
ð28Þ

Uþ0 ¼ eu0 � ik�n0xdð1þ Pþ0 =q0Þ; U�0 ¼ eu0 � ik�n0xdP�0 =q0

V þ0 ¼ ev0 � ik�n0ydð1þ ePþ0 =q0Þ; V �0 ¼ ev0 � ik�n0ydP�0 =q0

P�n =q0 ¼
�ikneun � ik�n0yevn � qnewn

dðk2
n þ k�2n2

0y � rnqnÞ

U�n ¼
ðk�2n2

0y � rnqnÞeun � knk�n0yevn 	 iknqnewn

k2
n þ k�2n2

0y � rnqn

ð29Þ

V �n ¼
�knk�n0yeun þ ðk2

n � rnqnÞevn 	 ik�n0yqnewn

k2
n þ k�2n2

0y � rnqn

The formulas (28) and (29) will be used for obtaining the integral equations for solving the problem.

4. The integral equations of the problem

4.1. The distributional equations

The periodic part of the velocity field was denoted in formulas 10 and 11 by ev�ðx; zÞ. But for z = 0 we haveevþðx; 0Þ ¼ ev�ðx; 0Þ ¼ evðxÞ. To obtain the equations satisfied by the functions euðxÞ;evðxÞ; ewðxÞ we impose the
condition of continuity of the normal derivative of velocity along the aperture

ov0ðx; 0Þ
oz

expf�ik�n0xxg þ
oevþðx; 0Þ

oz
¼ oev�ðx; 0Þ

oz
; x 2 ð�a; aÞ

There results the equations

Pð�a;aÞ
Xþ1

n¼�1
ðKðnÞ11 eun þ KðnÞ12 evnÞ expfinxxg

" #
¼ a d1=T

Pð�a;aÞ
Xþ1

n¼�1
ðKðnÞ21 eun þ KðnÞ22 evnÞ expfinxxg

" #
¼ a d2=T ð30Þ

Pð�a;aÞ
Xþ1

n¼�1
KðnÞ3 ewn expfinxxg

" #
¼ a d3=T

We add also the condition that on the screens the velocity vanishes. This may be expressed in the form

Pða;bÞ½evðxÞ� ¼ 0 ð31Þ

Here we have denoted by Pða;bÞ the restriction operator on (a,b). The coefficients entering into equations (30)
have the expressions
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Kð0Þ11 ¼
k�n0zx�0=m� k�2n2

0yðq0 � ik�n0zÞ
k�2ðn2

0x þ n2
0yÞ � ik�q0n0z

; Kð0Þ12 ¼
k�2n0xn0yðq0 � ik�n0zÞ

k�2ðn2
0x þ n2

0yÞ � ik�q0n0z

Kð0Þ22 ¼
k�n0zx�0=m� k�2n2

0xðq0 � ik�n0zÞ
k�2ðn2

0x þ n2
0yÞ � ik�q0n0z

; Kð0Þ3 ¼
q0

k�2ðn2
0x þ n2

0yÞ � ik�q0n0z

KðnÞ11 ¼
�ix�0rn=mþ k�2n2

0yðrn � qnÞ
k2

n þ k�2n2
0y � rnqn

; KðnÞ12 ¼
�knk�n0yðrn � qnÞ
k2

n þ k�2n2
0y � rnqn

; n 6¼ 0

KðnÞ22 ¼
�ix�0rn=mþ k2

nðrn � qnÞ
k2

n þ k�2n2
0y � rnqn

; KðnÞ3 ¼
qn

k2
n þ k�2n2

0y � rnqn

; KðnÞ12 ¼ KðnÞ21

d1 ¼
ix�0dk�n0xn0zT =ðamÞ

k�ðn2
0x þ n2

0yÞ � iq0n0z
; d2 ¼

n0y

n0x
d1; d3 ¼

q0m
x�k�n0x

d1

By substituting the expressions of the Fourier coefficients (13) the relations (30) become

Z a

�a
½euðx0ÞK11ðx� x0Þ þ evðx0ÞK12ðx� x0Þ�dx0 ¼ ad1; x 2 ð�a; aÞ ð32Þ

Z a

�a
½euðx0ÞK21ðx� x0Þ þ evðx0ÞK22ðx� x0Þ�dx0 ¼ ad2; x 2 ð�a; aÞ ð33Þ

Z a

�a
ewðx0ÞK3ðx� x0Þdx0 ¼ ad3; x 2 ð�a; aÞ ð34Þ

The kernels K11 �K3 have the expressions

KmpðxÞ ¼
Xþ1

n¼�1
KðnÞmp expfinxxg; K3ðxÞ ¼

Xþ1
n¼�1

KðnÞ3 expfinxxg ð35Þ

Thus, we obtained a system of two functional equations for determining the functions u(x) and v(x), Eqs. (32)
and (33), and an independent equation for the component w(x), Eq. (34).

Eqs. (32)–(34) have resulted from the corresponding pseudodifferential equations. The Fourier series
involved in the definition of the kernels K11 �K3 are not convergent as regular functions. They have to be
considered as distributions [9,10].

4.2. Reduction of the distributional equations to hypersingular integral equations

By using formulas (57)–(59) presented in the Appendix A, we can write the kernels K11 �K3 in the form

Kmp ¼ KS
mp þKR

mp

where the singular parts KS
mp and the regular parts KR

mp have the expressions
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KS
11ðxÞ ¼ b11 �

x
2

1

sin2ðxx=2Þ
þ ik�n0x cot

xx
2

 !
þ c11 �

2

x
log 2 sin

xx
2

			 			� �
KR

11ðxÞ ¼ Kð0Þ11 þ
X
n6¼0

KðnÞ11 � b11 jnxj þ k�n0x
nx
jnxj

� �
� c11

jnxj

� �
expðinxxÞ ð36Þ

KS
12ðxÞ ¼ ib12k�n0y cot

xx
2

KR
12ðxÞ ¼ Kð0Þ12 þ

X
n6¼0

KðnÞ12 � b12k�n0y
nx
jnxj

� �
expðinxxÞ ð37Þ

KS
22ðxÞ ¼ b22 �

x
2

1

sin2ðxx=2Þ
þ ik�n0x cot

xx
2

 !
þ c22 �

2

x
log 2 sin

xx
2

			 			� �
KR

22ðxÞ ¼ Kð0Þ22 þ
X
n6¼0

KðnÞ22 � b22 jnxj þ k�nx
nx
jnxj

� �
� c22

jnxj

� �
expðinxxÞ ð38Þ

KS
3ðxÞ ¼ b3 �

x
2

1

sin2ðxx=2Þ
þ ik�n0x cot

xx
2

 !
þ 2b3

x
log 2 sin

xx
2

			 			
KR

3 ðxÞ ¼ Kð0Þ3 þ
X
n6¼0

KðnÞ3 þ b3 jnxj þ k�n0x
nx
jnxj

� �
� c3

jnxj

� �
expðinxxÞ ð39Þ

The constants entering in these relationships have the expressions

b11 ¼
�2ix�=m

k�2 þ ix�=m
; b12 ¼

k�2 � ix�=m

k�2 þ ix�=m
; b22 ¼ �1; b3 ¼

2

k�2 þ ix�=m

c11 ¼
�2k�4n2

0y ix�=mþ ðix�=mÞ3 þ k�4ð�2k�2n2
0y þ 3ix�=mÞ

2ðk�2 þ ix�=mÞ2

c22 ¼
ix�0=mðix�=m� 3k�2n2

0yÞ þ k�2ðix�=mþ k�2n2
0yÞ

2ðk�2 þ ix�=mÞ

c3 ¼
�k�4 þ 2k�4n2

0y þ ð2k�2n2
0y � 3ix�=mÞix�=m

2ðk�2 þ ix�=mÞ2

The general terms in brackets in expressions (36), (37) and (39) decrease for n!1 like |n|�2 and, conse-
quently, the functions KR

mpðxÞ are continuous on the interval [�a,a]. Finally, there results the following hyper-
singular integral equations for solving the problem

b11 �
x
2

Z a

�a

euðx0Þdx0

sin2ðxðx� x0Þ=2Þ
þ ik�n0x

Z a

�a
euðx0Þ cot

xðx� x0Þ
2

dx0
 !
� 2c11

x

Z a

�a
euðx0Þ log 2 sin

xðx� x0Þ
2

				 				dx0 þ b12ik�n0y

Z a

�a
evðx0Þ cot

xðx� x0Þ
2

dx0

þ
Z a

�a
½euðx0ÞKR

11ðx� x0Þ þ evðx0ÞKR
12ðx� x0Þ�dx0 ¼ ad1 ð40Þ

b12ik�n0y

Z a

�a
euðx0Þ cot

xðx� x0Þ
2

dx0 � b22

x
2

Z a

�a

evðx0Þdx0

sin2ðxðx� x0Þ=2Þ

þ b22ik�n0x

Z a

�a
evðx0Þ cot

xðx� x0Þ
2

dx0 � 2c22

x

Z a

�a
evðx0Þ log 2 sin

xðx� x0Þ
2

				 				dx0

þ
Z a

�a
½euðx0ÞKR

21ðx� x0Þ þ evðx0ÞKR
22ðx� x0Þ�dx0 ¼ ad2 ð41Þ

b3 �
x
2

Z a

�a

ewðx0Þdx0

sin2ðxðx� x0Þ=2Þ
þ ik�n0x

Z a

�a
ewðx0Þ cot

xðx� x0Þ
2

dx0
 !
� 2c3

x

Z a

�a
ewðx0Þ log 2 sin

xðx� x0Þ
2

				 				dx0 þ
Z a

�a
ewðx0ÞKR

3 ðx� x0Þdx0 ¼ ad ð42Þ
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It is to be noticed that we obtained a system of hypersingular integral Eqs. (40) and (41) for determining
the components of velocity in the z = 0 plane and another hypersingular integral equation for determining
the velocity component in the z-direction. As the solutions satisfy the conditions euð�aÞ ¼ evð�aÞ ¼ewð�aÞ ¼ 0 the equations can be transformed into integro-differential equations with a Cauchy-type
singularity.

The hypersingular integral equation is the natural mathematical tool for approaching the diffraction of
damped acoustical waves. Direct numerical methods for solving hypersingular integral equations were devel-
oped by Kutt [11] and Dragos [12].

5. Reduction of the integral equations to infinite systems of algebraic equations

Instead of using collocation type methods for approximating the solution of the singular integral Eqs.
(40)–(42) we prefer a Galerkin-type approach based on a special basis of the corresponding Hilbert
space. The method takes advantage of the form of integral equations by using some spectral-type rela-
tionships, Fast Fourier Transform of some smooth function and summation of rapidly convergent infi-
nite series.

5.1. Galerkin’s method for solving the integral equations

In the space H1=2ð�a; aÞ of functions continuous on [�a,a] with derivatives having singularities of order 1/2
at extremities we consider the basis

sin n arccos
x
a


 �n o
; n ¼ 1; 2; . . .

We represent the function evðxÞ aseuðxÞevðxÞewðxÞ
264

375 ¼X1
m¼1

am

bm

cm

264
375 sin m arccos

x
a


 �
ð43Þ

By applying the Galerkin’s method to the singular integral Eqs. (40)–(42) we obtain the following sets of infinite
linear equations for determining the constants am, bm, cmX1

m¼1

Að1Þpmam þ
X1
m¼1

Bð1Þpmbm ¼
d1

2p
dp;1; p ¼ 1; 2; . . . ð44Þ

X1
m¼1

Að2Þpmam þ
X1
m¼1

Bð2Þpmbm ¼
d2

2p
dp;1; p ¼ 1; 2; . . .

X1
m¼1

Cpmcm ¼
d3

2p
dp;1; p ¼ 1; 2; . . . ð45Þ

The coefficients AðiÞpm, BðiÞpm, Cpm have the expressions

Að1Þpm ¼ �
b11x

2
Ið2Þpm þ b11ik�n0xI

ð1Þ
pm �

2c11

x
Ið0Þpm þ A1R

pm

Bð1Þpm ¼ b12ik�n0yI
ð1Þ
pm þ B1R

pm; Að2Þpm ¼ b12ik�nyI
ð1Þ
pm þ A2R

pm ð46Þ

Bð2Þpm ¼ �b22

x
2

Ið2Þpm þ b22ik�n0xI
ð1Þ
pm �

2c22

x
Ið0Þpm þ B2R

pm

Cpm ¼ �
b3x

2
Ið2Þpm þ b3ik�n0xI

ð1Þ
pm �

2c3

x
Ið0Þpm þ CR

pm ð47Þ
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The integrals IðiÞpm are given in the Appendix A and the ‘‘regular parts’’ A1R
pm � CR

pm can be written as

A1R
pm ¼

Kð0Þ11

4
dp;1dm;1 þ ip�mmp

X1
n¼1

J pðanxÞJ mðanxÞ
ðanxÞ2

� KðnÞ11

h
ð48Þ

þ ð�1ÞpþmKð�nÞ
11 � b11nxþ c11

nx


 �
ð1þ ð�1ÞpþmÞ � b11k�n0xð1� ð�1ÞpþmÞ

i
A2R

pm ¼ B1R
pm ¼

Kð0Þ12

4
dp;1dm;1 þ ip�mmp

X1
n¼1

J pðanxÞJ mðanxÞ
ðanxÞ2

� ½KðnÞ12

þ ð�1ÞpþmKð�nÞ
12 � b12k�n0yð1� ð�1ÞpþmÞ� ð49Þ

B2R
pm ¼

Kð0Þ22

4
dp;1dm;1 þ ip�mmp

X1
n¼1

J pðanxÞJ mðanxÞ
ðanxÞ2

� KðnÞ22

h
ð50Þ

þ ð�1ÞpþmKð�nÞ
22 � b22nxþ c22

nx


 �
ð1þ ð�1ÞpþmÞ � b22k�n0xð1� ð�1ÞpþmÞ

i
CR

pm ¼
Kð0Þ3

4
dp;1dm;1 þ ip�mmp

X1
n¼1

J pðanxÞJ mðanxÞ
ðanxÞ2

� KðnÞ3

h
ð51Þ

þ ð�1ÞpþmKð�nÞ
3 � b3nxþ c3

nx


 �
ð1þ ð�1ÞpþmÞ � c3k�n0xð1� ð�1ÞpþmÞ

i

5.2. Numerical realization of the method

The systems of linear Eqs. (44) and (45) have good properties from a computational point of view. Thus,
the integrals IðjÞpm are given by explicit relationships (64)–(66) in the Appendix A. The double integrals involved
in their expressions can be written as 2-D cosine Fourier transforms. The integrands in IðjÞpm are smooth func-
tions such that these integrals can be computed efficiently by using the 2-D discrete cosine transform function
of MATLAB. Finally, the coefficients A1R

pm � CR
pm can be obtained directly by summing the infinite series in for-

mulas (48)–(51). By subtracting several terms, and summing them separately, we have transformed the initial
infinite series into rapidly convergent series.

By the approach used in the previous section we have transformed the convolution operators in the Fourier
transform domain; this transform converts the convolution to a product ‘‘diagonalizing’’ the operators. This is
why the finite sections of the resulting infinite systems of linear equations have relatively low condition num-
bers and the series giving the functions euðxÞ, evðxÞ, ewðxÞ are rapidly convergent.

6. Transmission coefficient: Numerical results

In order to determine how much of the incoming plane wave is passing through the grating we will consider
the transmission coefficient s defined in Mechels’ book [13] (p. 432) as the squared magnitude of the ratio of
transmitted to incident

s ¼ jP�0 =Aj2 ð52Þ

pressures. Thus, once the solutions of the systems (44) and (45) are determined the functions euðxÞ, ewðxÞ can be
introduced in formula (43) for obtaining the corresponding Fourier coefficients. Finally, formulas (28) and
(52) provide the value of the transmission coefficient as

s ¼ q0w1 þ ik�u1 sin h0

iq0 cos h0 þ k� sin2 h0

ap
2ðaþ bÞAdk�

					
					
2

ð53Þ

For determining the influence of air viscosity on the transmission coefficient in Fig. 2a we have plotted |s| ver-
sus slits width d for periodic spacing values w = 25, 50, 100, 200 lm, frequency = 20 kHz, and the unit vector
of the incoming wave n0 ¼ ð

ffiffiffi
2
p

=2; 0;�
ffiffiffi
2
p

=2Þ, in the nonviscous case, obtained also by means of a Galerkin
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approach. In Fig. 2b there is plotted the same transmission coefficient in the case where the effect of viscosity
of air is included. For small slits of width d the influence of viscosity on the transmission coefficient is signif-
icant. Hence, in order to avoid the excessive attenuation of the sound due to the grating the openings in the
periodic screen have to be of order of 10 lm.

Fig. 2. The transmission coefficient s versus slit’s width d for periodic spacing. (a) the nonviscous case, (b) the viscous case.

Fig. 3. The dependence of transmission coefficient s versus azimuth coordinate u.
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We analyze now the dependence of the transmission coefficient upon the horizontal direction of the incom-
ing plane wave. For this we considered a spherical system of coordinates x = r sinh cosu, y = r sinh sinu,
z = r cosh.

In Fig. 3 there are plotted the values of |s|1/2 versus azimuth coordinate u for constant colatitudes coordi-
nate h = p/4, and two values: 2 and 3 lm of the slit width. It is to be noticed that, practically, the transmission
coefficient does not depend on u.

Finally, Fig. 4 plots the dependence of the transmission coefficient with frequency of the incoming wave.
For each value of h the transmission coefficient shows a weak dependence on frequency in the audible fre-
quency range.
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Appendix A. A.1. Some Fourier series

Starting with the equality [14]X1
n¼1

cosðnxxÞ
nx

¼ � 1

x
log 2 sin

xx
2

			 			 ð54Þ

we can writeX1
n¼1

sinðnxxÞ ¼ 1

2
cot

xx
2

ð55Þ

X1
n¼1

nx cosðnxxÞ ¼ �x
4

1

sin2ðxx=2Þ
ð56Þ

the distributions in the right-hand side being considered as regularizations of the corresponding functions
[15,16,17].

Fig. 4. The dependence of transmission coefficient s versus frequency.
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A.2. Integrals used in Section 4

We start with formula [18]

� 1

p

Z 1

�1

cosðn arccos x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x02
p log jx� x0jdx0 ¼

cosðn arccos xÞ=n; n P 1

log 2; n ¼ 1

�
ð57Þ

By using this relationship we can write also

� 1

p

Z 1

�1

sinðn arccos x0Þ log jx� x0jdx0 ¼
cosðn�1Þh

2ðn�1Þ �
cosðnþ1Þh

2ðnþ1Þ ; n > 1

log 2
2
� cosð2hÞ

4
; n ¼ 1

(
ð58Þ

where h = arccos x. The derivatives of relation (58) give

1

p

Z 1

�1

sinðn arccos x0Þ
x� x0

dx0 ¼ cosðnhÞ; n P 1 ð59Þ

� 1

p

Z 1

�1

sinðn arccos x0Þ
ðx� x0Þ2

dx0 ¼ n
sinðnhÞ

sin h
ð60Þ

The change of integration variable x 0 = cos h 0 in the formulas (58)–(60) gives

� 1

p

Z p

0

sinðnh0Þ sin h0 log j cos h� cos h0jdh0 ¼
cosðn�1Þh

2ðn�1Þ �
cosðnþ1Þh

2ðnþ1Þ ; n > 1

log 2
2
� cosð2hÞ

4
; n ¼ 1

(
ð61Þ

1

p

Z p

0

sinðnh0Þ sin h0

cos h� cos h0
dh0 ¼ cosðnhÞ; n P 1 ð62Þ

� 1

p

Z p

0

sinðnh0Þ sin h0

ðcos h� cos h0Þ2
dh0 ¼ n

sinðnhÞ
sin h

; n P 1 ð63Þ

By using formulas (61)–(63) there results

Ið2Þpm �
1

a2p2

Z a

�a

Z a

�a

sinðmh0Þ sinðphÞ
sin2ðxðx� x0Þ=2Þ

dx0 dx ð64Þ

¼ � 2m
a2x2

dp;m þ
1

p2

Z p

0

Z p

0

1

sin2 Z
� 1

Z2

� �
dSpm

Ið1Þpm �
1

a2p2

Z a

�a

Z a

�a
sinðmh0Þ sinðphÞ cot

xðx� x0Þ
2

dx0 dx ð65Þ

¼ 1

2ax
ðdmþ1;p � dm;pþ1Þ þ

1

p2

Z p

0

Z p

0

cot Z � 1

Z

� �
dSpm

Ið0Þpm �
1

a2p2

Z a

�a

Z a

�a
sinðmh0Þ sinðphÞ log 2 sin

xðx� x0Þ
2

				 				dx0 dx ð66Þ

¼
:125½ðdpþ2;m � dp;mÞ=ðm� 1Þ þ ðdp;mþ2 � dp;mÞ=ðmþ 1Þ�; m > 1

:25 logðxa=2Þdp1dm1 þ 0:0625ðdp;3 � dp;1Þdm;1; m ¼ 1

�
þ 1

p2

Z p

0

Z p

0

log
sin Z

Z

				 				dSpm

Here we have denoted

h0 ¼ arccos ðx0=aÞ; h ¼ arccos ðx=aÞ

Z ¼ xa
2
ðcos h� cos h0Þ

dSpm ¼ sinðmh0Þ sinðphÞ sin h0 sin h dh dh0
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A.3. A Fourier Transform

We consider the generating function of Bessel’s functions

exp
z
2

w� 1

w

� �� 
¼
X1

n¼�1
J nðzÞwn

and take w = i exp {iu}. There results

expfiz cos ug ¼
X1

n¼�1
J nðzÞin expfinug

By using the orthogonality relationship of the complex exponential there resultsZ p

0

expfiz cos ug cosðmuÞdu ¼ pimJ mðzÞ ð67Þ

Then, we haveZ a

�a
sin p arccos

x
a


 �
expfinxxgdx ¼ a

Z p

0

sinðphÞ sin h expfinx cos hgdh

and using the Eq. (67) and some properties of Bessel’s functions we finally obtain formulaZ a

�a
sin p arccos

x
a


 �
expfinxxgdx ¼ pip�1 p

nx
J pðanxÞ: ð68Þ
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